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Abstract
This investigation studies theoretically transmissions and conducting currents
in a nanometre field effect transistor in a distorted electric field. In the ballistic
transport regime, the momentum conservation does not apply in the direction
perpendicular to the carrier transport owing to the presence of a distorted
electric field that is caused by the drain and gate biases associated with the
fringe effect. This scattering occurs in both long- and short-channel field effect
transistors, and is particularly large in nanometre devices that operate in the
ballistic transport regime.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, technology for the mass production of semiconductor devices has reached the
milestone of manufacturing a metal–oxide–semiconductor field effect transistor (MOSFET)
with a gate length of 45 nm. Further advances will shrink the gate length to 30 nm or
even smaller [1, 2]. Ballistic transport and quantum transport [1, 3–5] are important when
the gate length is comparable to or smaller than the mean free path (which depends on
the doping concentration in the conducting channel, the operating temperature, the defect
density, the oxide charge [6] and the doping concentration in the poly-gate for a very thin
oxide [7], <1.7 nm) and the Fermi wavelength of the conducting carriers in the channel
material. However, the combination of the drain (VD) and gate (VG) biases associated with
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the fringe effect4 produces a distorted field (DF)—a field strength in the direction normal to
the conducting channel that is a function of the distance along the channel. The distorted field
acts as a scattering source to the conducting carriers, and becomes gradually more important as
the device is shrunk, especially in the scattering-free or ballistic transport regime. This work
reveals that the scattering strength of DF, according to the multi-channel transfer matrix (MT)
method [8–10], is significant in the nanoscale MOSFET (ns-MOS), and should change the
transmission and conducting current in the high DF regime.

In theoretical investigations, the Green’s function (GF) approach has been widely used
in the study of the transport characteristics of ns-MOS devices [11–14]. The advantages of
the GF approach are: (1) detailed information on system wavefunctions is unnecessary; and
(2) it has been well developed to treat interacting systems [15, 16], such as carrier–carrier,
carrier–phonon and carrier–impurity interactions. In highly non-equilibrium regime, where the
Fermi–Dirac distribution is no longer applicable, instead, the non-equilibrium GFs have to be
considered and make numerical calculation complicated. The transfer matrix method, based on
the basis of system wavefunctions, is one of the useful methods in the investigation of quantum
transport. The convenience of the method is that the detailed distribution in the non-equilibrium
regime is inessential, because the carrier concentration in that regime can be directly deduced
from the source reservoirs, which are in equilibrium, through the connection of the system
wavefunctions. In this work, the transfer matrix theory was extended to the case of multiple
conducting channels with the presence of a scattering potential (DF scattering). A comparison
between the transmissions estimated using MT and GF approaches for an ns-MOS without the
presence of DF is also presented.

Section 2 of this work first discusses multi-channel quantum transport theory for an ns-
MOS. Section 3 presents numerical results and discusses an ns-MOS with a gate length of
10 nm. Finally, section 4 draws conclusions.

2. Theory

To demonstrate the DF scattering, consider an ns-MOS structure that is built on an SOI (silicon
on insulator) wafer, as displayed in figure 1, and composed of a heavily doped source and drain,
an undoped channel with a channel length of L and a channel height of H , and a gate that is
capacitively coupled to the conducting channel. Although this single-gate structure will not
be the device architecture of choice for ultimate scaling, it is convenient for demonstrating the
DF scattering in an ns-MOS without loss of generality. The heavy doping of the source and
drain allow them to be treated as reservoirs. In the one-band effective-mass approximation, the
system can be described using a three-dimensional Schrödinger equation,

− h̄2

2
�∇ ·

(
1

m∗ �∇�

)
+ V (x, y, z)� = E�, (1)

where the potential V includes the external biases and the potential of the structure that confines
the carriers in the z-direction with an infinite barrier height but allows them to be transported
in the y-direction and to move freely in the x-direction, and m∗ is the effective mass of the
carriers. The undoped Si channel associated with the heavily doped source and drain forms a
square barrier Vy0 between the source and the drain with barrier height Eg/2 + Ef, where Eg

is the forbidden gap of Si and Ef is the Fermi energy in the source and drain regions. In the

4 The fringe effect in ns-MOS results in a non-uniform electric field in the channel, which not only corrects the
capacitance of the parallel-plate capacitor between the gate and source/drain, but also reduces the field effect of the
gate bias and provides a distorted field as well.
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Figure 1. Schematic structure of the ns-MOS.

gradual channel approximation [6], the model potential V has the simple form

V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vz0 for y � 0

−eVD

L
y − eεox

(εSid + εox H )

(
VGeff

L/2
− VD

L

)
(H − z)y

+ Vy0 + Vz0 for 0 < y � L/2

−eVD

L
y − eεox

(εSid + εox H )

(
VGeff

L/2
− VD

L

)
(H − z)(L − y)

+ Vy0 + Vz0 for L/2 < y � L

−eVD

L
y + Vz0 for L < y,

(2)

where εox (εSi) is the dielectric constant of SiO2 (Si), Vz0 is the square-well potential with an
infinite barrier height in the z-direction, and VGeff is the effective gate bias that includes the
effects of the oxide charge and work-function difference between the metal gate and the Si
channel. The drain bias VD drives the charge particles through the conducting channel. In
the channel region 0 < y � L, the potential V includes the effect of DF that depends on
the channel length, the channel height, the gate oxide thickness d , the biases VD and VGeff,
the distribution of space charge and the geometry of the device. In the model potential that is
described by equation (2), the screening-free DF potential5 has the form

VDF = eε(y)z =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for y � 0
eεox

(εSid + εox H )

(
VGeff

L/2
− VD

L

)
yz for 0 < y � L/2

− eεox

(εSid + εox H )

(
VGeff

L/2
− VD

L

)
yz for L/2 < y � L

0 for L < y.

(3)

5 The screening effect redistributes the charge distribution in the conducting channel and thus enhances the local
electric fields in both y- and z-directions. This may result in strengthening local DF strength, especially in nanoscale
devices where the ballistic transport dominates the device’s characteristics. Therefore, a screening-free potential is
good for demonstrating the effect of DF scattering.
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In the absence of the DF potential, the transverse momentum of the transporting carriers is
conserved as they pass through the structure—no scattering occurs; but a non-zero distorted
field alters the direction of the momentum of the carriers from their transverse states to another
state but conserves the absolute momentum; elastic scattering occurs.

Equation (1) is solved by applying the one-dimensional finite-element approach to the y-
directional potential, where the structure along the y-axis is partitioned into N + 1 layers, each
with a y-independent potential Vi ((yi + yi+1)/2, z), where yi is the location of the i th interface
between the i th and (i − 1)th layers. During this treatment, the potential V of the i th layer has
the form Vi = V0i + eεi z with a constant potential V0i and a y-dependent electric field εi , as
shown in equation (3). Equation (1) is completely separable and has the solution

�α =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1/π H )1/2eikx x sin kz,αz[a0,α,+ exp(ik0,αy) + a0,α,− exp(−ik0,α y)] for y < 0;
(1/2π)1/2bi,αeikx x

{
− Bi(−ζ

1/3
i z0,i,α)

Ai(−ζ
1/3
i z0,i,α)

Ai [ζ 1/3
i (z − z0,i,α)] + Bi [ζ 1/3

i (z − z0,i,α)]
}

× [ai,α,+ exp(iki,α y) + ai,α,− exp(−iki,α y)] for yi−1 � y < yi;
(1/π H )1/2eikx x sin kz,αz[aN,α,+ exp(ikN,α y) + aN,α,− exp(−ikN,α y)] for L � y.

(4)

Ex (kx =
√

2m∗Ex/h̄2) is the kinetic energy (momentum) in the x-direction, and Ey,i,α =
E − Ex − Ez,i,α (ki,α =

√
2m∗Ey,i,α/h̄2) is the kinetic energy (momentum) in the y-

direction for the i th layer, where Ez,i,α is the αth eigenvalue of the z-directional Schrödinger
equation of the layer. Ai and Bi are the Airy functions with ζi = −2em∗εi/h̄2 and z0,i,α =
2m∗(Ez,i,α − V0i)/ζi h̄2. bi,α is the normalization constant for the z-directional wavefunction,
and ai,α,ν is the combinatorial coefficient of the i th layer and the αth state, and ν denotes
forward (+) or backward (−) motion of carrier in the y-direction.

In the following discussion, the wavefunction of the i th layer is conveniently represented,
in Dirac notation, in terms of the bound states combined with the forward (+) and backward
(−) transport states,

|i〉 =
∑
α,γ

ai,α,γ |i, α〉γ , (5)

with γ = +,−. The coordinate representation of the state |i, α〉γ has the form

〈�r |i, α〉± = (1/2π)1/2bi,α sin kx x

×
{

− Bi(−ζ
1/3
i z0,i,α)

Ai(−ζ
1/3
i z0,i,α)

Ai [ζ 1/3
i (z − z0,i,α)] + Bi [ζ 1/3

i (z − z0,i,α)]
}

× exp(±iki,α y). (6)

The requirement of current conservation in the direction of transport between two adjacent
layers i and i + 1 gives the multi-channel transfer matrix equation

[Ji,α,ν;i,β,γ ][ai,β,γ ] = [Ji,α,ν;i+1,β,γ ][ai+1,β,γ ], (7)

which is usually denoted as T2i−1 Xi = T2i Xi+1. The dimensions of the transfer matrix T (the
coefficient matrix X ) are 2p × 2p (2p × 1) where p is the number of bound states or channels
that are considered in the tunnelling problem. The matrix elements in equation (7) are

Ji,α,ν; j,β,γ ≡ ν〈i, α| Ĵi | j, β〉γ
= (h̄/2m∗)(γ k j,β + νki,α)δkx,i ,kx, j Oi,α; j,β exp(−iνki,α yi) exp(iγ k j,β yi), (8)
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Figure 2. Transmission coefficients calculated by MT (solid lines) and GF (dot lines) methods with
the absence of DF for the conditions of (a) VGeff = 0 V and VD = 0 V, and (b) VGeff = 0 V and
VD = 0.7 V.

with the overlap integral

Oi,α; j,β ≡
∫ h

0
b∗

i,αb j,β

{
− Bi(−ζ

1/3
i z0,i,α)

Ai(−ζ
1/3
i z0,i,α)

Ai [ζ 1/3
i (z − z0,i,α)] + Bi [ζ 1/3

i (z − z0,i,α)]
}∗

×
{

− Bi(−ζ
1/3
j z0, j,β)

Ai(−ζ
1/3
j z0, j,β)

Ai [ζ 1/3
j (z − z0, j,β)] + Bi [ζ 1/3

j (z − z0, j,β)]
}

dz, (9)

where the current operator at the i th interface is defined as Ĵi = (h̄/2im∗)[δ(y − yi)�∂y −
∂
←

yδ(y − yi)], and the arrow → (←) means that the operator operates on the right-hand (left-
hand) side. Notably, the overlap Oi,α; j,β is a measure of the strength of carrier scattering from
the bound state α in layer i to the state β in layer j . A non-zero overlap between α and β

indicates that a fraction of the longitudinal momentum of the carrier is elastically transferred
to or gained from the transverse direction during the carrier transport over these layers. The
completeness of the wavefunctions gives the identity

∑
α O∗

i,α; j,β Oi,α; j,β ′ = δβ,β ′ , which is
useful for gauging the validity of the calculation of the transmission in a system that consists of
a finite number of bound states. The transmission coefficient (TC) of the i th channel is defined
as the ratio of the total transmission current, that is produced by single-channel injection, to the
injection current of the i th channel,

�i ≡ 1

|a0,i,+|2 J0,1,+;0,1,+

∑
j

|aN, j,+|2 JN, j,+;N, j,+. (10)

The current density at the temperature T can be estimated using

JD =
∑

α

−em∗√πkBT

π2h̄2

∫ ∞

0
�α(Ey)J0,α,+;0,α,+(Ey){Li 1

2
[exp(−(Ey − μS)/kBT )]

− Li 1
2
[exp(−(Ey − μD)/kBT ))]} 1√

Ey
dEy, (11)
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Figure 3. Overlap integrals of the ground state in layer i with ground state 〈i, 1|i + 1, 1〉 (square),
the first excited state 〈i, 1|i + 1, 2〉 (circle), and the second excited state 〈i, 1|i + 1, 3〉 (up-
triangle) in layer i + 1 as a function of (a) channel height H for εi = 1 × 107 V m−1 and
�εi = 5 × 107 V m−1, (b) electric field εi for H = 10 nm and �εi = 1 × 107 V m−1, and
(c) strength of DF �εi = εi − εi+1 for H = 10 nm and εi = 1 × 107 V m−1. The energy levels
of the ground (solid line), first excited (dashed line), and second excited (dot–dashed line) states as
functions of (a) H and (b) εi are also plotted. The inverted triangles indicate the completeness of
these states.

where Lin , obtained by integrating the Fermi distribution function over the kinetic energy Ex , is
a poly-logarithm function of order n, kB is the Boltzmann constant, and μS (μD) is the chemical
potential in the source (drain) region.

3. Numerical results and discussion

First, a comparison of the TCs calculated by the MT method (solid lines) with those obtained
by the GF method (dashed lines) for the conditions of (a) VGeff = 0 V and VD = 0 V, and
(b) VGeff = 0 V and VD = 0.7 V are shown in figure 2. The TCs estimated by the GF approach
agree well with those estimated by the MT method.

In a numerical demonstration of the DF scattering, a system with three confined states (a
three-channel system) and a gate length L = 10 nm is considered. The theory elucidated in
the preceding section is applied to the system. The off-diagonal overlaps (α �= β) drop as the
effective electric field εi (figure 3(b)) increases and/or the well width H (figure 3(a)) decreases,
saturating at H > 10 nm and/or εi < 3 × 106 V m−1 for �εi ≡ εi − εi+1 = 1 × 107 V m−1

(a measure of the DF strength). However, the overlaps increase with the DF strength �εi

6
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Figure 4. Transmission coefficients of first, second and third (steps of 0.4 from the bottom) channels
in the presence (solid) and absence (dashed) of DF scattering for (a) VGeff = 1 V, (b) VGeff = 1.5 V
and (c) VGeff = 2 V, and the differences between the TCs in the presence and absence of DF
scattering for the first (solid), second (dashed) and third (dotted) channels at biases of VD = 0.7 V
and VGeff = 2 V.

(figure 3(c)). These characteristics can be explained by perturbation theory—all of the bound
states in each layer form a basis of the transverse Hilbert space, and every state in the nearest-
neighbour layers can be expressed as a linear combination of the vectors in the basis. The
absolute square of the combinatorial coefficients is the probability that a carrier transitions
from one of the states in layer i to the other states in layer j . To a second-order approximation,
the transmission is proportional to |〈i, α, z|Vi, j | j, β, z〉/(E j,β,z − Ei,α,z)|2, where Vi, j , linearly
proportional to �εi , is the potential difference between layers i and j , and Ei,α,z is the energy
of the bound state α in the layer i . The increase of the confinement strength and/or increase
in the electric field εi increase(s) the energy difference in the denominator of the transmission,
as plotted in figures 3(a) and (b), thus reducing the overlaps. The increase in �εi increases
the overlaps (figure 3(c)). A non-unity completeness of these states at high DF region displays
that higher state (higher than the lowest three states) scattering arises. The contribution from
these higher states must be properly accounted for to estimate correctly the transmission in this
region.

Equation (10) is utilized to estimate TCs for the lowest three levels (channels), and
the calculated results are plotted in figure 4. The TCs in the presence and absence of DF
scattering differ substantially and exhibit many features: (1) both cases involve several resonant
peaks, because of the quasi-bound states that are produced by boundary reflection at the
interfaces between the source and the Si channel and between the drain and the Si channel.

7
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Figure 5. Rate of change of TC for the first channel in the presence and absence of DF scatterings
at (a) VGeff = 1 V, (b) VGeff = 1.5 V, and (c) VGeff = 2 V at the biases of VD = 0.1, 0.3, 0.5, 0.7,
0.9, and 1.1 V, in steps of 0.4 from the bottom.

(2) The TC of the i th channel falls as the total energy E of the carrier decreases below its
confinement energy E0,i,z in the source region, because no carrier can occupy the tunnelling
channel in this situation. The order of the confinement energies for the lowest three levels,
E0,1,z < E0,2,z < E0,3,z , gives rise to the order of onset energies Eos1 < Eos2 < Eos3

of the TCs. (3) The resonant peaks are broadened by DF scattering, in which some of the
transported carriers that are scattered out of the original channel reduce the TC but increase the
TC of the other channels, as presented in figure 4(d). (4) Figures 4(a)–(c) indicate the increase
in scattering strength with VGeff at VD = 0.7 V because the DF strengths follow the order
�ε(VGeff = 2V ) > �ε(VGeff = 1.5 V) > �ε(VGeff = 1 V).

Figure 5 plots the calculated changing rate, defined as (TCscatt − TCnonscatt)/TCnonscatt, of
the first channel, to demonstrate the difference between the TCs in the presence and absence
of DF scattering. According to the potential given by equation (3), the DF strength is linearly
proportional to VGeff − VD/2, and the rate of change increases with VGeff but falls as VD and/or
the total energy E increase(s). Since carriers with energies of around the Fermi energy Efs in
the source region dominate the tunnelling current, a large decrease in the rate of change, caused
by DF scattering, markedly degrades the tunnelling current as shown in figure 6.

8
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Figure 6. Calculated current density of the drain with the presence (square) and the absence (circle)
of DF as a function of VGeff at VD = 1.3 V.

4. Conclusion

A multi-channel transfer matrix theory was derived for carrier transport in the ns-MOS, based
on the finite-element approach. Although the derived theory utilizes a simple and screening-
free potential (see footnote 5), the consequences calculated herein indicate that DF scattering
is important, especially in the ballistic transport region, and that the drop in TC exceeds 50%
at low energy. An accurate estimate of the transport current in nanodevices should not ignore
the effect of DF scattering, especially in a strong field.
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